# ANALYSIS OF AGE, PERIOD AND COHORT EFFECTS IN LONG-TERM FOLLOW-UP STUDIES

Simo Näyhä

May 20, 2014

Starting point:

People at different ages are being followed up for a lengthy period



A group of people aged 0-100 yr

Follow-up

may be short: 1-5years

may be long: 5-100 years

During the follow-up, not only calendar time goes on





#### THE PROBLEM

What really happens as "time" goes on ?

| Three things happen: |                       | "Effects"                |
|----------------------|-----------------------|--------------------------|
| 1.                   | People age            | Age (A)                  |
| 2.                   | Calendar time goes on | Time Period (P)          |
| 3.                   | Generations change    | Generation or Cohort (C) |
|                      |                       |                          |

Obviously, these are difficulty to define as separate effects, since:

#### $A = C + P \qquad P = C + A \qquad C = P - A$

However, A, P and C are different effects

# For example, THE EFFECT OF AGE

What is really meant by "age pattern"?

- 1. Purely a biologically-based concept
- In an epidemiological setting, can be directly observed only if the temporal trend in disease incidence is unchanged over a lengthy period
- 3. Otherwise, the effect of age is inseparable from those of period / cohort

# THE AGE PATTERN

Hypothetical data, assuming no change of incidence over time



# THE AGE PATTERN

#### Hypothetical data, assuming no change of incidence over time



# THE AGE PATTERN

Hypothetical data, assuming a 2% annual increase of incidence



# THE AGE PATTERN

Hypothetical data, assuming a 2% annual increase of incidence



# THE EFFECT OF "TIME"

Mostly perceived in terms of calendar time

What is meant by an increasing / decreasing incidence ?

- 1. Can be understood in terms of a
  - ✓ change in calendar time (period effect)
  - ✓ change between cohorts (cohort / generation effect)
- 2. Not a unique concept when age is taken into account
- 3. Can be uniquely determined only in the absence of any age effect

# THE TEMPORAL CHANGE P, C

Hypothetical data, assuming a 2% annual increase of incidence but no age effect



# THE TEMPORAL CHANGE P, C

Hypothetical data, assuming a 2% annual increase of incidence with an age effect (a 3rd degree polynomial of age)



Incidence change constant but levels vary by cohorts



## THE "GENERATION" EFFECT

#### How it looks like in a age-period setting? A simulated example



#### The effects of A, P, and C ?

- 1. In real-life situations, empirical data alone cannot tell the effects of age and "time", rather you need external information. The APC analysis can quantify the effects.
- 2. What are the effects of A, P and C?
  - ✓ Age really affects morbididy on a biological basis => A
     ✓ Interventions may affect all age groups => P

- Causal factors which change over calendar time may be limited to a narrow age range => cohort effect
- 3. How to quantify the effects of A, P and C?

#### Modelling A, P and C effects

- 1) Two factor model A + P or A + C
  - Useful if you know in advance that P or C is important  $\checkmark$
- 2) Three factor model A + P + C
  - ✓ Problem: how to identify the effects of P and C
  - Y = A + P + C is equivalent to Y = A + P + (P A)

Makes no sense

Several solutions suggested how to overcome the problem

#### Suggested approaches to APC modelling

Instead of A + P + Cintroduce a "drift" parameter such as  $A + P + C + d(c - c_0)$ , or  $c_0$  baseline cohort p<sub>0</sub> baseline period  $A + P + C + d (p - p_0)$ This removes the "common" linear trend in C / P Detrended residuals (often curved) interpretable as effects of C/P

#### Parametrization of a drift model

| Age function A    | Age specific rates in a reference cohort $c_0$                                         |
|-------------------|----------------------------------------------------------------------------------------|
| Cohort function C | Interpretable as a risk ratio (RR) relative to the reference cohort $c_0$              |
| Period function P | Interpretable as RR relative to<br>the <u>age-cohort prediction</u><br>= "residual RR" |
| Drift parameter   | Can be incorporated in C, or can be extracted as a separate parameter                  |

C and P can be interchanged (they are equally valid)

#### Some aspect of modelling

Factor models (categorical explanatory factors)

Flexible, but power

#### **Continuous functions (polynomials)**

Retain continuity => power **1** A "regular" shape May be unstable at the edges

#### Generalized additive models (GAM)

Loess / lowess Splines (usually cubic, fitted between "knots")

Retain continuity => power **1** No assumption of regularity, "conforms" to data

#### Apc.fit function

Available in the **R** software (http://www.r-project.org)

Several options to parametrize APC models

#### **Reference:**

Carstensen B, Keiding N. Age-Period-Cohort models. Statistical inference in the Lexis diagram. Available from: www.biostat.ku.dk/~bxc/APC

**Recommended reading:** 

Carstensen B. Age-period-cohort models for the Lexis diagram. Statistics in Medicine 2007; 26: 3018-45

#### Lung cancer incidence in Denmark, 1943-93

#### First plot empirical data: any suggestion for P or C ?

Incidence / age

Incidence / periods

**Incidence / cohorts** 









#### **Example: starting and quitting of smoking**

#### Outcomes

| <ul> <li>starting of smoking</li> </ul> | A cohort effect assumed            |  |  |
|-----------------------------------------|------------------------------------|--|--|
| - quitting of smoking                   | No cohort effect assumed           |  |  |
| Data                                    | A smoking survey 2003              |  |  |
|                                         | University of Tartu staff          |  |  |
| Design                                  | Cross sectional survey             |  |  |
|                                         | Cohort constructed retrospectively |  |  |
| Questionnaire                           | age of starting regular smoking    |  |  |
|                                         | age of quitting                    |  |  |

#### Starting of smoking: a cohort effect assumed

#### Kaplan-Meier cumulative incidence proportion



Most people start before the age of 25, if they ever start





#### Starting of smoking: a drift model AdCP

Incidence fitted by GAM with 4 knots

C, P constrained to 0, drift - 1.5 % / year (not included)

Now A, C, P "detrended"



#### Quitting of smoking: a period effect assumed

#### Kaplan-Meier cumulative incidence proportion



Proportion of quitters increases by time in a linear fashion

# Quitting of smoking: "lifelines"



# Quitting of smoking: drift model AdCP

Incidence fitted by GAM with 4 knots

C, P constrained to 0, drift + 4 % / year (not included)

A, C, P "detrended"



# Some recommendations for analysis of long-term follow-up data

- Arrange data to form a Lexis diagram (allows different time scales)
- Compute cases and person-times
   (how to do it, see e.g. Carstensen 2007)
- ✓ Use Poisson regression with age, period and cohort as <u>continuous</u> variables; specify the drift parameter
- Report age-specific incidence figures and relative rates (RR) versus the pertinent baseline
- P values can be calculated for A, P and C but are rarely useful: rather use confidence intervals

# AGE PATTERN OF TUBERCULOSIS

USA Mass, 1880-1930, Men (Frost 1939)

- Previously tbc typical of the young
- The age peak has shifted towards the older ages
- Assumed cause: impared resistance & lowered physiological reserves among the elderly



Frost W 1939

# AGE PATTERN OF TUBERCULOSIS

USA Mass, 1880-1930 (Frost 1939)

#### Frost's observation

- Age pattern constant in successive generations
- Tbc declined similarly in all age groups
- Generation determines the entire lifetime risk



### TUBERKULOSEDÖDELIGHED PRO 10000 INDEN DE FORSKJELLIGE 5-AARS KULL I SVERIGE, 1896- 1926

Anvord Kr. Hvad kan vi laera ved å folge tuberkulosens gang fra generasjon til generasjon? Norsk Magasin for Laegevidenskaben 1930; 91: 642-660



# DISEASES WITH A SUSPECTED OR CONFIRMED COHORT EFFECT

Pulmonary tuberculosis Coronary disease & stroke Suicides Duodenal ulcer & helicobacteria Chronic gastritis Ulcerative colitis Stomach cancer

Anvord 1930, Frost 1939

Feinleib 1993

Åsgard et al. 1987

Susser & Stein 2002

Sipponen 1996

Sonnenberg 2002

Aragones 1997

#### THE INCIDENCE OF SCHIZOPHRENIA

Takei N, Lewis G, Sham P, Murray RM. Age-period-cohort analysis of the incidence of schizophrenia in Scotland. Psychological Medicine 1996;26:963-73

- A cohort effect estimated at +10%
- The causative factor decreases in intensity over generations

Suggested explanations

- Mothers' nutrition improved
- Better control of infections



#### Takei N 1996

# **FINNISH GENERATIONS**

| Generation                           | Generations possibly affected |                                                                        |  |
|--------------------------------------|-------------------------------|------------------------------------------------------------------------|--|
| Wars 1939-44<br>Postwar time 1945-50 | 1920s<br>1940s                | Smoking<br>Adverse living conditions                                   |  |
| Urbanization 1960s                   | 1940s                         | Depopulation of<br>countryside<br>New life in cities                   |  |
| Economic depression in early 1990s   | 1980s<br>->                   | Widening of social gaps<br>Marginalized people =<br>a new social class |  |