ANALYSIS OF AGE, PERIOD AND COHORT EFFECTS IN LONG-TERM FOLLOW-UP STUDIES

Simo Näyhä May 20, 2014

Starting point:

People at different ages are being followed up for a lengthy period

A group of people aged 0-100 yr

Follow-up

may be short: 1-5years

may be long: 5-100 years

During the follow-up, not only calendar time goes on

THE PROBLEM

What really happens as "time" goes on ?

Obviously, these are difficulty to define as separate effects, since:

$A = C + P$ $P = C + A$ $C = P - A$

However, **A**, **P** and **C** are different effects

For example, THE EFFECT OF AGE

What is really meant by "age pattern"?

- 1. Purely a biologically-based concept
- 2. In an epidemiological setting, can be directly observed only if the temporal trend in disease incidence is unchanged over a lengthy period
- 3. Otherwise, the effect of age is inseparable from those of period / cohort

THE AGE PATTERN

Hypothetical data, assuming no change of incidence over time

THE AGE PATTERN

Hypothetical data, assuming no change of incidence over time

THE AGE PATTERN

Hypothetical data, assuming a 2% annual increase of incidence

THE AGE PATTERN

Hypothetical data, assuming a 2% annual increase of incidence

THE EFFECT OF "TIME"

Mostly perceived in terms of calendar time

What is meant by an increasing / decreasing incidence?

- 1. Can be understood in terms of a
	- \checkmark change in calendar time (period effect)
	- \checkmark change between cohorts (cohort / generation effect)
- 2. Not a unique concept when age is taken into account
- 3. Can be uniquely determined only in the absence of any age effect

THE TEMPORAL CHANGE P, C

Hypothetical data, assuming a 2% annual increase of incidence but no age effect

THE TEMPORAL CHANGE P, C

Hypothetical data, assuming a 2% annual increase of incidence with an age effect (a 3rd degree polynomial of age)

Incidence change constant but levels vary by cohorts

THE "GENERATION" EFFECT

How it looks like in a age-period setting? A simulated example

The effects of A, P, and C ?

- 1. In real-life situations, empirical data alone cannot tell the effects of age and "time", rather you need external information. The APC analysis can quantify the effects.
- 2. What are the effects of A, P and C ?

3. How to quantify the effects of A, P and C ?

Modelling A, P and C effects

- 1) Two factor model $A + P$ or $A + C$
	- \checkmark Useful if you know in advance that P or C is important
- 2) Three factor model $A + P + C$
	- \checkmark Problem: how to identify the effects of P and C
		- $Y = A + P + C$ is equivalent to $Y = A + P + (P A)$

Makes no sense

Several solutions suggested how to overcome the problem

Suggested approaches to APC modelling

Instead of $A + P + C$ introduce a "drift" parameter such as $\mathsf{A} + \mathsf{P} + \mathsf{C} + \mathsf{d}$ ($\mathsf{c} - \mathsf{c}_0$), or $\qquad \quad \mathsf{c}_0$ baseline cohort $A + P + C + d (p - p_0)$ p_0 baseline period This removes the "common" linear trend in C / P Detrended residuals (often curved) interpretable as effects of C / P

Parametrization of a drift model

C and P can be interchanged (they are equally valid)

Some aspect of modelling

Factor models (categorical explanatory factors)

Flexible, but power

Continuous functions (polynomials)

Retain continuity => power A "regular" shape May be unstable at the edges

Generalized additive models (GAM)

Loess / lowess Splines (usually cubic, fitted between "knots")

Retain continuity => power No assumption of regularity, "conforms" to data

Apc.fit function

Available in the R software (http://www.r-project.org)

Several options to parametrize APC models

Reference:

Carstensen B, Keiding N. Age-Period-Cohort models. Statistical inference in the Lexis diagram. Available from: www.biostat.ku.dk/~bxc/APC

Recommended reading:

Carstensen B. Age-period-cohort models for the Lexis diagram. Statistics in Medicine 2007; 26: 3018-45

Lung cancer incidence in Denmark, 1943-93

First plot empirical data: any suggestion for P or C ?

Incidence / age

Incidence / periods Incidence / cohorts

Example: starting and quitting of smoking

Outcomes

Starting of smoking: a cohort effect assumed

Kaplan-Meier cumulative incidence proportion

Most people start before the age of 25, if they ever start

Starting of smoking: a drift model AdCP

Incidence fitted by GAM with 4 knots

C, P constrained to 0, $drift - 1.5 %$ / year (not included)

Now A, C, P "detrended"

Quitting of smoking: a period effect assumed

Kaplan-Meier cumulative incidence proportion

Proportion of quitters increases by time in a linear fashion

Quitting of smoking: "lifelines" ¹⁹⁴⁰ ¹⁹⁶⁰ ¹⁹⁸⁰ ²⁰⁰⁰ $\overline{0}$ + **Starting** 20 $\frac{2}{9}$ 40
 $\frac{4}{9}$ 30 $\widehat{\leq}$ 40 50 60 70 Year of birth **Follow-up closed Red: "event" Green: censored Quit of smoking No predilection to any particular age**

Quitting of smoking: drift model AdCP

Incidence fitted by GAM with 4 knots

C, P constrained to 0, drift $+ 4 %$ / year (not included)

A, C, P "detrended"

Some recommendations for analysis of long-term follow-up data

- \checkmark **Arrange data to form a Lexis diagram (allows different time scales)**
- \checkmark **Compute cases and person-times (how to do it, see e.g. Carstensen 2007)**
- \checkmark **Use Poisson regression with age, period and cohort as continuous variables; specify the drift parameter**
- \checkmark **Report age-specific incidence figures and relative rates (RR) versus the pertinent baseline**
- \checkmark **P values can be calculated for A, P and C but are rarely useful: rather use confidence intervals**

AGE PATTERN OF TUBERCULOSIS

USA Mass, 1880-1930, Men (Frost 1939)

- \bullet Previously tbc typical of the young
- • The age peak has shifted towards the older ages
- • Assumed cause: impared resistance & lowered physiological reserves among the elderly

Frost W 1939

AGE PATTERN OF TUBERCULOSIS

USA Mass, 1880-1930 (Frost 1939)

Frost's observation

- • Age pattern constant in successive generations
- • Tbc declined similarly in all age groups
- •**Generation** determines the entire lifetime risk

TUBERKULOSEDÖDELIGHED PRO 10000 INDEN DE FORSKJELLIGE 5-AARS KULL I SVERIGE, 1896- ¹⁹²⁶

Anvord Kr. Hvad kan vi laera ved å folge tuberkulosens gang fra generasjon til generasjon? Norsk Magasin for Laegevidenskaben 1930; 91: 642-660

DISEASES WITH A SUSPECTED OR CONFIRMED COHORT EFFECT

Pulmonary tuberculosis **Anvord 1930, Frost 1939** Coronary disease & stroke Feinleib 1993 Suicides **Asgard** et al. 1987 Duodenal ulcer & helicobacteria Susser & Stein 2002 Chronic gastritis Sipponen 1996 Ulcerative colitis **Sonnenberg 2002** Stomach cancer **Aragones** 1997

THE INCIDENCE OF SCHIZOPHRENIA

Takei N, Lewis G, Sham P, Murray RM. Age-period-cohort analysis of the incidence of schizophrenia in Scotland. Psychological Medicine 1996;26:963-73

- \bullet A cohort effect estimated at +10% •
	- The causative factor decreases in intensity over generations

Suggested explanations

- \bullet Mothers' nutrition improved
- •Better control of infections

Takei N 1996

FINNISH GENERATIONS

Backman G 1988.1